Mining, analyzing, and modeling text written on mobile devices

Author:

Vertanen K.,Kristensson P.O.

Abstract

AbstractWe present a method for mining the web for text entered on mobile devices. Using searching, crawling, and parsing techniques, we locate text that can be reliably identified as originating from 300 mobile devices. This includes 341,000 sentences written on iPhones alone. Our data enables a richer understanding of how users type “in the wild” on their mobile devices. We compare text and error characteristics of different device types, such as touchscreen phones, phones with physical keyboards, and tablet computers. Using our mined data, we train language models and evaluate these models on mobile test data. A mixture model trained on our mined data, Twitter, blog, and forum data predicts mobile text better than baseline models. Using phone and smartwatch typing data from 135 users, we demonstrate our models improve the recognition accuracy and word predictions of a state-of-the-art touchscreen virtual keyboard decoder. Finally, we make our language models and mined dataset available to other researchers.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Linguistics and Language,Language and Linguistics,Software

Reference75 articles.

1. Kombrink, S. , Mikolov, T. , Karafiát, M. and Burget, L. (2011). Recurrent neural network based language modeling in meeting recognition. In Proceedings of INTERSPEECH. ISCA, vol. 11, pp. 2877–2880.

2. An evaluation of Dasher with a high-performance language model as a gaze communication method

3. Stolcke, A. (2002). SRILM – an extensible language modeling toolkit. In Proceedings of INTERSPEECH. ISCA, pp. 901–904.

4. Vertanen, K. and Kristensson, P.O. (2011a). The imagination of crowds: conversational AAC language modeling using crowdsourcing and large data sources. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing. Edinburgh, Scotland, UK: Association for Computational Linguistics, pp. 700–711.

5. Answering the Call for a Standard Reliability Measure for Coding Data

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fast and Robust Mid-Air Gesture Typing for AR Headsets using 3D Trajectory Decoding;IEEE Transactions on Visualization and Computer Graphics;2023-11

2. Evaluating the Performance of Hand-Based Probabilistic Text Input Methods on a Mid-Air Virtual Qwerty Keyboard;IEEE Transactions on Visualization and Computer Graphics;2023-11

3. FlexType: Flexible Text Input with a Small Set of Input Gestures;Proceedings of the 28th International Conference on Intelligent User Interfaces;2023-03-27

4. ThumbAir;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies;2022-12-21

5. Effect of gestures and smartphone sizes on user experience of text input methods;Universal Access in the Information Society;2022-01-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3