Language model adaptation for language and dialect identification of text

Author:

Jauhiainen T.,Lindén K.,Jauhiainen H.

Abstract

AbstractThis article describes an unsupervised language model (LM) adaptation approach that can be used to enhance the performance of language identification methods. The approach is applied to a current version of the HeLI language identification method, which is now called HeLI 2.0. We describe the HeLI 2.0 method in detail. The resulting system is evaluated using the datasets from the German dialect identification and Indo-Aryan language identification shared tasks of the VarDial workshops 2017 and 2018. The new approach with LM adaptation provides considerably higher F1-scores than the basic HeLI or HeLI 2.0 methods or the other systems which participated in the shared tasks. The results indicate that unsupervised LM adaptation should be considered as an option in all language identification tasks, especially in those where encountering out-of-domain data is likely.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Linguistics and Language,Language and Linguistics,Software

Reference73 articles.

1. Zavaliagkos G. and Colthurst T. (1998). Utilizing untranscribed training data to improve performance. In Proceedings of the DARPA Broadcast News Transcription and Understanding Workshop, pp. 301–305.

2. Zampieri M. , Tan L. , Ljubešić N. , Tiedemann J. and Nakov P. (2015). Overview of the DSL shared task 2015. In Proceedings of the Joint Workshop on Language Technology for Closely Related Languages, Varieties and Dialects (LT4VarDial), Hissar, Bulgaria, pp. 1–9.

3. Wu N. , DeMattos E. , So K.H. , Chen P.-z. and Çöltekin Ç. (2019). Language discrimination and transfer learning for similar languages: experiments with feature combinations and adaptation. In Proceedings of the Sixth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial), Minneapolis, USA.

4. Vatanen T. , Väyrynen J.J. and Virpioja S. (2010). Language identification of short text segments with N-gram models. In Proceedings of the 7th International Conference on Language Resources and Evaluation (LREC 2010), Valletta, Malta, pp. 3423–3430.

5. Exploring Word Recognition in a Semi-Alphabetic Script: The Case of Devanagari

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Large Scale, Multi-domain Language Identification;Synthesis Lectures on Human Language Technologies;2024

2. Evaluation and Measurement;Synthesis Lectures on Human Language Technologies;2024

3. Automatic Language Detection for Low Resource Ho Language;2023 OITS International Conference on Information Technology (OCIT);2023-12-13

4. It’s All in the Name: A Character-Based Approach to Infer Religion;Political Analysis;2023-03-23

5. Automatic Dialect Detection for Low Resource Santali Language;2021 19th OITS International Conference on Information Technology (OCIT);2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3