From unified phrase representation to bilingual phrase alignment in an unsupervised manner

Author:

Liu Jingshu,Morin Emmanuel,Peña Saldarriaga Sebastian,Lark Joseph

Abstract

AbstractSignificant advances have been achieved in bilingual word-level alignment, yet the challenge remains for phrase-level alignment. Moreover, the need for parallel data is a critical drawback for the alignment task. This work proposes a system that alleviates these two problems: a unified phrase representation model using cross-lingual word embeddings as input and an unsupervised training algorithm inspired by recent works on neural machine translation. The system consists of a sequence-to-sequence architecture where a short sequence encoder constructs cross-lingual representations of phrases of any length, then an LSTM network decodes them w.r.t their contexts. After training with comparable corpora and existing key phrase extraction, our encoder provides cross-lingual phrase representations that can be compared without further transformation. Experiments on five data sets show that our method obtains state-of-the-art results on the bilingual phrase alignment task and improves the results of different length phrase alignment by a mean of8.8points in MAP.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Linguistics and Language,Language and Linguistics,Software

Reference82 articles.

1. Learning task-dependent distributed representations by backpropagation through structure

2. Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation

3. Peng, X. , Lin, C. and Stevenson, M. (2021). Cross-lingual word embedding refinement by $\ell_{1}$ norm optimisation. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Online. Association for Computational Linguistics, pp. 2690–2701.

4. Agerri, R. , Bermudez, J. and Rigau, G. (2014). Ixa pipeline: Efficient and ready to use multilingual nlp tools. In Chair N.C.C., Choukri K., Declerck, T., Loftsson, H., Maegaard, B., Mariani, J., Moreno, A., Odijk, J. and Piperidis, S. (eds), Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC’14), Reykjavik, Iceland. European Language Resources Association (ELRA).

5. Single or Multiple? Combining Word Representations Independently Learned from Text and WordNet

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computational Terminology;New Frontiers in Translation Studies;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3