APPLYING STATE SPACE MODELS TO STOCHASTIC CLAIMS RESERVING

Author:

Hendrych RadekORCID,Cipra Tomas

Abstract

AbstractThe paper solves the loss reserving problem using Kalman recursions in linear statespace models. In particular, if one orders claims data from run-off triangles to time series with missing observations, then state space formulation can be applied for projections or interpolations of IBNR (Incurred But Not Reported) reserves. Namely, outputs of the corresponding Kalman recursion algorithms for missing or future observations can be taken as the IBNR projections. In particular, by means of such recursive procedures one can perform effectively simulations in order to estimate numerically the distribution of IBNR claims which may be very useful in terms of setting and/or monitoring of prudency level of loss reserves. Moreover, one can generalize this approach to the multivariate case of several dependent run-off triangles for correlated business lines and the outliers in claims data can be also treated effectively in this way. Results of a numerical study for several sets of claims data (univariate and multivariate ones) are presented.

Publisher

Cambridge University Press (CUP)

Subject

Economics and Econometrics,Finance,Accounting

Reference53 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3