Comparing Factor, Class, and Mixture Models of Cannabis Initiation and DSM Cannabis Use Disorder Criteria, Including Craving, in the Brisbane Longitudinal Twin Study

Author:

Kubarych Thomas S.,Kendler Kenneth S.,Aggen Steven H.,Estabrook Ryne,Edwards Alexis C.,Clark Shaunna L.,Martin Nicholas G.,Hickie Ian B.,Neale Michael C.,Gillespie Nathan A.

Abstract

Accumulating evidence suggests that the Diagnostic and Statistical Manual of Mental Disorders (DSM) diagnostic criteria for cannabis abuse and dependence are best represented by a single underlying factor. However, it remains possible that models with additional factors, or latent class models or hybrid models, may better explain the data. Using structured interviews, 626 adult male and female twins provided complete data on symptoms of cannabis abuse and dependence, plus a craving criterion. We compared latent factor analysis, latent class analysis, and factor mixture modeling using normal theory marginal maximum likelihood for ordinal data. Our aim was to derive a parsimonious, best-fitting cannabis use disorder (CUD) phenotype based on DSM-IV criteria and determine whether DSM-5 craving loads onto a general factor. When compared with latent class and mixture models, factor models provided a better fit to the data. When conditioned on initiation and cannabis use, the association between criteria for abuse, dependence, withdrawal, and craving were best explained by two correlated latent factors for males and females: a general risk factor to CUD and a factor capturing the symptoms of social and occupational impairment as a consequence of frequent use. Secondary analyses revealed a modest increase in the prevalence of DSM-5 CUD compared with DSM-IV cannabis abuse or dependence. It is concluded that, in addition to a general factor with loadings on cannabis use and symptoms of abuse, dependence, withdrawal, and craving, a second clinically relevant factor defined by features of social and occupational impairment was also found for frequent cannabis use.

Publisher

Cambridge University Press (CUP)

Subject

Genetics (clinical),Obstetrics and Gynecology,Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3