Asymptotic rates of response from index selection

Author:

Wray Naomi R.,Hill W. G.

Abstract

ABSTRACTThe reduction in additive genetic variance due to selection is investigated when index selection using family records is practised. A population of infinite size with no accumulation of inbreeding, an infinitesimal model and discrete generations are assumed. After several generations of selection, the additive genetic variance and the rate of response to selection reach an asymptote. A prediction of the asymptotic rate of response is considered to be more appropriate for comparing response from alternative breeding programmes and for comparing predicted and realized response than the response following the first generation of selection that is classically used. Algorithms to calculate asymptotic response rate are presented for selection based on indices which include some or all of the records of an individual, its full- and half-sibs and its parental estimated breeding values. An index using all this information is used to predict response when selection is based on breeding values estimated by using a Best Linear Unbiased Prediction (BLUP) animal model, and predictions agree well with simulation results. The predictions are extended to multiple trait selection.Asymptotic responses are compared with one-generation responses for a variety of alternative breeding schemes differing in population structure, selection intensity and heritability of the trait. Asymptotic responses can be up to one-quarter less than one-generation responses, the difference increasing with selection intensity and accuracy of the index. Between family variance is reduced considerably by selection, perhaps to less than half its original value, so selection indices which do not account for this tend to place too much emphasis on family information. Asymptotic rates of response to selection, using indices including family information for traits not measurable on the individuals available for selection, such as sex limited or post-slaughter traits, are found to be as much as two-fifths less than their expected one-generation responses. Despite this, the ranking of the breeding schemes is not greatly altered when compared by one-generation rather than asymptotic responses, so the one-generation prediction is usually likely to be adequate for determining optimum breeding structure.

Publisher

Cambridge University Press (CUP)

Subject

Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3