The effects of dietary energy content on the response of dairy cows to body condition at calving

Author:

Jones G. P.,Garnsworthy P. C.

Abstract

ABSTRACTFour groups of six cows were fed from 12 weeks before calving to achieve condition scores at calving of 3·23 (F) and 1·98 (T). For the first 20 weeks of lactation all cows were given 10 kg/day of isonitrogenous (180 g crude protein per kg dry matter (DM)) compounds containing either a high (13·0 MJ/kg DM; HE) or a low (9·8 MJ/kg DM; LE) concentration of metabolizable energy, together with 3 kg/day molassed sugar-beet pulp and hay offered ad libitum.The mean milk yield of cows receiving compound HE (27·7 kg/day) was higher (P > 0·05) than that of cows receiving compound LE (25·6 kg/day). Cows in group FHE yielded 27·0 kg/day, compared with 25·5 kg/day for FLE (P > 0·05); cows in group THE yielded 28·4 kg/day compared with 25·17 kg/day for TLE (P <0·05). After peak lactation, milk yields were maintained better in group THE but declined at a faster rate in group TLE than in groups FHE and FLE. Neither dietary energy concentration nor condition score at calving significantly affected milk composition (butterfat 43·5, protein 29·1, lactose 50·2 g/kg). Cows receiving compound HE consumed significantly (P < 0·001) more energy (208 MJ/day) than cows receiving compound LE (188 MJ/day). Over the first 10 weeks of lactation, changes in condition were –0·83, –0·88 +0·08 and –0·25 (s.e.d. 0·22, P < 0·05) condition score units for cows in groups FHE, FLE, THE and TLE respectively.It is concluded that with diets of high energy concentration intake is mainly limited by physiological mechanisms so that thin cows eat more than fat cows and produce similar amounts of milk. With diets of lower energy concentration, intake is limited by rumen capacity and thin cows eat the same as fat cows. This results in increased fat mobilization and a slight decrease in milk yield by cows which are fat at calving but the limited fat reserves of cows which are thin at calving are insufficient to compensate for reduced energy intake so large reductions in milk yield are observed.

Publisher

Cambridge University Press (CUP)

Subject

Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3