A comparison of gas production during incubation with rumen contents in vitro and nylon bag degradability as predictors of the apparent digestibility in vivo and the voluntary intake of hays

Author:

Khazaal K.,Dentinho M. T.,Ribeiro J. M.,Ørskov E. R.

Abstract

AbstractTen hays harvested at three stages (early bloom MB, mid bloom MB or in seed) made from lucerne (Medicago sativaj, sweet clover (Melilotus segetalis), Persian clover (Trifolium resupinatum) and pre-bloom (PB) Italian ryegrass (Lolium multiflorum var.), were offered ad libitum to four Merino male sheep and daily intake (g dry matter (DM) per kg M0·75) and DM apparent digestibility (DMD) were measured. In sacco DM degradation (g per 100 g DM), gas production (ml per 200 mg DM), in vitro digestibility and fibre composition (g/kg DM) of the hays were also studied. Gas production or DM degradation were calculated at 6, 12, 24, 48, 72 or 96 h and their kinetics were described using the equation p = a + b(1 - e-ct). Intake and in vivo DMD of the hays were variable (P < 0·01). Lucerne EB and Persian clover (all stages) had the highest nutritive value, whereas sweet clover (all stages) had the lowest. Apart from neutral-detergent fibre, which was only related to intake (r = -0·68; P < 0·05), chemical components and in vitro digestibility were poorly (P > 0·05) related to animal performance. Between 12 and 96 h incubation, intake and in vivo DMD were better related to DM degradation (r = 0·79 to 0·83; r = 0·61 to 0·77) than to gas production (r = 0·73 to 0·80; r = 0·58 to 0·78). Prediction of intake and in vivo DMD from the (a + b) values did not provide a great advantage over using some of the static values of gas production or DM degradation.Multiple regression using separated kinetics of degradation resulted in highest accuracy for predicting intake and apparent digestibility from gas production (R2 = 0·63; R2 = 0·78) and nylon bag degradability (R2 = 0·77; R2 = 0·89). It was concluded that the gas test has good potentiality as it was capable of predicting not only apparent digestibility, but also intake to a level close to that of the nylon bag technique.

Publisher

Cambridge University Press (CUP)

Subject

Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3