Abstract
§0. Introduction and material background. The present paper is devoted to the study of intermediate propositional logics, and it is based on [Be, §§1 and 2].§2 (§§0 and 1 are introductory) concerns the axiomatization of finite logics. In the literature several effective procedures to axiomatize finite logics are present (cf., for instance, [MK] and [Wr]), but, in each case, the number of propositional variables which are used is redundant. In this direction, Theorem 2.2 provides (a) a criterion to determine, given a finite logic L, the least n such that L is axiomatizable by formulas in n variables, and (b) an effective axiomatization by an n-formula. As a corollary we obtain a negative answer to Problem 7.10 of [Ho/On], showing that there is no connection between the slice to which L belongs and the number of propositional variables necessary to axiomatize L.The principal results of the paper are in §3. In fact, a great deal of research has been done on the correspondence between conditions on the relation of Kripke-structures from one side, and axioms added to Int from the other. In this section we (a) introduce the concept of finitely separable class of Kripke-frames, and show, by means of several examples, that this concept is “wide”, in the sense that all the most studied classes of frames determined by semantical conditions are finitely separable; (b) show that each finitely separable class is axiomatizable, and that the axioms can be found by means of semantical considerations only; and (c) establish the finite model property for all the finitely separable logics.
Publisher
Cambridge University Press (CUP)
Reference13 articles.
1. Pretabular superintuitionist logic
2. Intermediate prepositional logics (a survey);Hosoi;Journal of Tsuda College,1973
3. Smoryński C. , Investigations on intuitionistic formal systems by means of Kripke models, Ph.D. thesis, University of Illinois, Urbana, Illinois, 1973.
4. Semantical Investigations in Heyting’s Intuitionistic Logic
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献