Plankton ecology and the Proterozoic-Phanerozoic transition

Author:

Butterfield Nicholas J.

Abstract

Most modern marine ecology is ultimately based on unicellular phytoplankton, yet most large animals are unable to graze directly on even relatively large net phytoplankton; the repackaging effected by herbivorous mesozooplankton thus represents a key link in marine metazoan food chains. Despite the deep taphonomic biases affecting plankton fossilization, there is a clear record of phytoplankton from at least 1800 m.y ago. Proterozoic plankton are represented by small-to medium-sized sphaeromorphic acritarchs and probably do not include many/most of the unusually large acritarchs that characterize the Neoproterozoic. The first significant shift in phytoplankton diversity was therefore the rapid radiation of small acanthomorphic acritarchs in the Early Cambrian. The coincidence of phytoplankton diversification with the Cambrian radiation of large animals points compellingly to an ecological linkage between the two, particularly in light of recently discovered filter-feeding mesozooplankton in the Early Cambrian. The introduction of planktic filter feeders would have established the second tier of the Eltonian pyramid, potentially setting off the “self-propagating mutual feedback system of diversification” now recognized as the Cambrian explosion (Stanley 1973, 1976).By consuming significant percentages of net phytoplankton and suspending it as animal biomass and non-aggregating fecal pellets, mesozooplankton cause a net reduction in export production; a general introduction of zooplankton would therefore have reduced carbon burial and moderated the bloom and bust cycle that must have characterized Proterozoic populations of net phytoplankton. The effect of added trophic levels in Early Cambrian ecosystems can be viewed as a serial application of the trophic cascade process observed in modern lakes, whereby the introduction of higher trophic levels determines the accumulation of plant biomass at the base of the system. As such, the major biogeochemical perturbations that mark the onset of the Phanerozoic might be considered a consequence, rather than a cause, of the Cambrian explosion; reduced C export due to zooplankton expansion explains the otherwise anomalous drop in δ13C at the base of the Tommotian.Cambrian acanthomorphic acritarchs likely derived from planktic leiosphaerids exposed to mesozooplanktic grazing pressure, the ornamentation effectively increasing vesicle size without compromising buoyancy or surface-area:volume ratios. Alternatively, they may represent an escape into the plankton through a miniaturization of the much larger Neoproterozoic acanthomorphs. An invasion of small benthic herbivores into the water column to exploit the phytoplankton accounts for the origin of the mesozooplankton and may have been the key innovation in the Cambrian explosion.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 196 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3