Abstract
The evolutionary rates of Paleozoic Crinoidea were obtained using dynamic survivorship analysis. The stratigraphic ranges of 838 genera were used in the analyses, revealing a mean generic duration of 12.0 m.y. and a mean species duration of 6.7 m.y., values within the range of longevities reported for other taxa.Further analyses showed differences in evolutionary rates among crinoid taxa: camerate species and genera were shorter-lived than species and genera of flexibles and inadunates. This pattern may result from ecological differences among these taxa: an energy budget equation solved for crinoids with various filter morphologies revealed that crinoids with fine-mesh filters require higher current velocities to supply them with sufficient particulate nutrients than do crinoids with coarse-mesh filters. A hypothesis stipulating that these differences control the distribution of crinoids among different environments is supported by patterns of occurrence of Mississippian crinoids: the pinnulate camerates (fine filter) dominate higher energy settings while the non-pinnulate inadunates and flexibles (coarse filter) are found in all environments. The “specialized” pinnulate crinoids may therefore be more prone to speciation and extinction than the non-pinnulate “generalists,” thus accounting for the observed differences in the evolutionary rates of the three subclasses.The above hypothesis was tested by comparing evolutionary rates of two morphological groups: fine-filtered crinoids (camerates) and coarse-filtered crinoids (non-pinnulate Paleozoic crinoids). As predicted, fine-filtered taxa had higher extinction and origination rates. A “bootstrapping” technique revealed that the differences in extinction rates were significant at the p < 0.10 level.
Publisher
Cambridge University Press (CUP)
Subject
Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
91 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献