Survivorship analysis of Paleozoic Crinoidea: effect of filter morphology on evolutionary rates

Author:

Baumiller Tomasz K.

Abstract

The evolutionary rates of Paleozoic Crinoidea were obtained using dynamic survivorship analysis. The stratigraphic ranges of 838 genera were used in the analyses, revealing a mean generic duration of 12.0 m.y. and a mean species duration of 6.7 m.y., values within the range of longevities reported for other taxa.Further analyses showed differences in evolutionary rates among crinoid taxa: camerate species and genera were shorter-lived than species and genera of flexibles and inadunates. This pattern may result from ecological differences among these taxa: an energy budget equation solved for crinoids with various filter morphologies revealed that crinoids with fine-mesh filters require higher current velocities to supply them with sufficient particulate nutrients than do crinoids with coarse-mesh filters. A hypothesis stipulating that these differences control the distribution of crinoids among different environments is supported by patterns of occurrence of Mississippian crinoids: the pinnulate camerates (fine filter) dominate higher energy settings while the non-pinnulate inadunates and flexibles (coarse filter) are found in all environments. The “specialized” pinnulate crinoids may therefore be more prone to speciation and extinction than the non-pinnulate “generalists,” thus accounting for the observed differences in the evolutionary rates of the three subclasses.The above hypothesis was tested by comparing evolutionary rates of two morphological groups: fine-filtered crinoids (camerates) and coarse-filtered crinoids (non-pinnulate Paleozoic crinoids). As predicted, fine-filtered taxa had higher extinction and origination rates. A “bootstrapping” technique revealed that the differences in extinction rates were significant at the p < 0.10 level.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3