Abstract
Three major arguments have been raised against the crucial claim, documented by Whittington and colleagues for the Burgess Shale fauna, and so contrary to traditional views, that disparity of anatomical design reached an early maximum in the history of multicellular life: (1) the presence of many early taxa with low membership and high rank is an artifact of naming; (2) cladistic analysis of Burgess arthropods negates the claim for greater early disparity; and (3) Whittington's argument is a retrospective fallacy based on assigning high rank to differentia only by virtue of their later capacity to define major branches. I show that all these arguments are either false or illogical, and that the claim for increased early disparity is justified: (1) Taxonomic rank is an artifact, but no one has ever based a claim for greater disparity on this false criterion. (2) Cladistics can only deal with branching order, whereas disparity is a phenetic issue. These two legitimate aspects of evolutionary “relationship” are logically distinct. The rooting of a cladogram only illustrates monophyletic ancestry (which no one doubts, as we are not creationists), and cannot measure disparity. (3) The active stabilization of the differentia ofBaupläne(for genetic and developmental reasons only dimly understood) provides a powerful rationale for weighting these characters in considerations of disparity; nothing had so stabilized in the Burgess fauna. If these differentia were steadily changing contingencies, rather than actively stabilized features with “deep” architectural status, then the retrospective argument would be justified. Although the three arguments are wrong, the claim for greater early disparity cannot be confidently established until we develop quantitative techniques for the characterization of morphospace and its differential filling through time. This is a dauntingly difficult problem, much harder than cladistic ordering, but not intractable.
Publisher
Cambridge University Press (CUP)
Subject
Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics
Reference46 articles.
1. The largest Cambrian animal,
Anomalocaris
, Burgess Shale, British-Columbia
2. The Middle Cambrian trilobite
Naraoia
, Burgess Shale, British Columbia
3. Middle Cambrian Branchiopoda, Malacostraca, Trilobita and Merostomata. Cambrian Geology and Paleontology, II;Walcott;Smithsonian Miscellaneous Collections,1912
4. On growth and form.
Cited by
206 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献