Are brachiopods better than bivalves? Mechanisms of turbidity tolerance and their interaction with feeding in articulates

Author:

Thayer Charles W.

Abstract

The dominance of Paleozoic articulate brachiopods in once-muddy environments may be explained by an array of mechanisms and structures that reject nonfood particles, in some cases without interruption of feeding: (1) behavioral flexibility of the lophophore and its individual filaments; (2) persistent, variable-speed rejection currents on the mantle, which sometimes concentrate pseudofeces in topographically controlled vortices; (3) costae and alae (which have many other probable functions); (4) inhalant currents elevated above substrate; (5) marginal setae.Some mantle currents parallel (and presumably augment) lophophore feeding currents; others diverge up to 90° to provide rejection while feeding continues. Contrary to previous reports, the lateral cilia seem to be involved in rejection and may reverse.Repeated claims for the superiority of the gill of suspension-feeding bivalves over the “weak” individual filaments of the lophophore are probably false. In suspension-feeding bivalves, simultaneous feeding and rejection are likely to be hindered by fused gill elements and mucus-trapping of food. The energetically efficient articulates are predicted to have a competitive advantage over suspension-feeding bivalves when oxygen or food is limiting, as, for example, after a bolide impact.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3