Abstract
The dominance of Paleozoic articulate brachiopods in once-muddy environments may be explained by an array of mechanisms and structures that reject nonfood particles, in some cases without interruption of feeding: (1) behavioral flexibility of the lophophore and its individual filaments; (2) persistent, variable-speed rejection currents on the mantle, which sometimes concentrate pseudofeces in topographically controlled vortices; (3) costae and alae (which have many other probable functions); (4) inhalant currents elevated above substrate; (5) marginal setae.Some mantle currents parallel (and presumably augment) lophophore feeding currents; others diverge up to 90° to provide rejection while feeding continues. Contrary to previous reports, the lateral cilia seem to be involved in rejection and may reverse.Repeated claims for the superiority of the gill of suspension-feeding bivalves over the “weak” individual filaments of the lophophore are probably false. In suspension-feeding bivalves, simultaneous feeding and rejection are likely to be hindered by fused gill elements and mucus-trapping of food. The energetically efficient articulates are predicted to have a competitive advantage over suspension-feeding bivalves when oxygen or food is limiting, as, for example, after a bolide impact.
Publisher
Cambridge University Press (CUP)
Subject
Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
76 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献