Prolonged stability in local populations of Cerion agassizi (Pleistocene-Recent) on Great Bahama Bank

Author:

Gould Stephen Jay

Abstract

Long-term persistence of patterns in geographic variation within species is an interesting and puzzling phenomenon. I present a well-defined natural experiment in the land snail Cerion agassizi from the islands of Great Bahama Bank. C. agassizi is the best-known fossil of the ca. 120,000 years BP dunes of New Providence, Cat and Eleuthera Islands; populations have survived on Cat and Eleuthera. During the Wisconsin glacial advance, all these islands joined together in an emergent bank. Presence of the same species on two islands at two times permits a test for both time signatures (does change occur in the same manner on both islands) and island signatures (do aspects of shell phenotypes remain constant on each island through time).Factor and discriminant analyses establish morphological separations among fossil populations of the three islands. These differences occur along pathways specified by well-known covariance sets in the complex allometric ontogeny of Cerion. By these routes, small variations in the geometry of growth may be magnified to large differences in external appearance. I found a time signature, probably attributable to introgression of modern populations by Cerion glans on both Cat and Eleuthera. Despite the intermediate period of emergence and joining of all islands, I also found an island signature in the preservation through time, on both Cat and Eleuthera, of the differentia that separate fossil populations. The basic distinctions of the two islands, expressed as patterns of covariance in growth, have been stable for at least 120,000 years.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3