Demise of the middle Paleozoic crinoid fauna: a single extinction event or rapid faunal turnover?

Author:

Ausich William I.,Kammer Thomas W.,Baumiller Tomasz K.

Abstract

Macroevolutionary change from the Middle to the Late Paleozoic crinoid fauna was not the result of mass extinction. The presumption that the decline of the middle Paleozoic crinoid fauna was from a single mass extinction event was tested using seriation, multidimensional scaling (MDS), binomial analysis, and bootstrapping simulations on a data set which is a comprehensive revision of old faunal lists. The data for these analyses were based on temporal distributions of 214 species from 69 late Osagean and early Meramecian localities from the midcontinental United States. The time under consideration is subdivided into seven informal intervals using MDS in conjunction with biostratigraphy. Seriation of species ranges into these intervals results in a gradual pattern of faunal turnover, and sampling bias can be eliminated as a cause for this more gradual pattern. MDS analysis of the crinoid range data is similar to MDS simulations using data with continuous, monotonic species turnover and dissimilar to a simulated mass extinction. Binomial analysis and bootstrapping demonstrate that the observed number of extinctions at the putative extinction boundary were not unusually high. All methods agree that extinctions throughout this time were high but spanned several time intervals and that rapid, monotonic faunal turnover describes the data better than mass extinction. Macroevolutionary processes other than mass extinction and microevolutionary processes must have dictated the character and composition of this remarkable faunal transition among the Crinoidea.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3