The biomolecular paleontology of continental fossils

Author:

Briggs Derek E. G.,Evershed Richard P.,Lockheart Matthew J.

Abstract

The preservation of compounds of biological origin (nucleic acids, proteins, carbohydrates, lipids, and resistant biopolymers) in terrigenous fossils and the chemical and structural changes that they undergo during fossilization are discussed over three critical stratigraphic levels or “time slices.” The youngest of these is the archeological record (e.g., <10 k.y. B.P.), when organic matter from living organisms undergoes the preliminary stages of fossilization (certain classes of biomolecule are selectively preserved while others undergo rapid degradation). The second time slice is the Tertiary. Well-preserved fossils of this age retain diagenetically modified biomarkers and biopolymers for which a product-precursor relationship with the original biological materials can still be identified. The final time slice is the Carboniferous. Organic material of this age has generally undergone such extensive diagenetic degradation that only the most resistant biopolymers remain and these have undergone substantial modification. Trends through time in the taphonomy and utility of ancient biomolecules in terrigenous fossils affect their potential for studies that involve chemosystematic and environmental data.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

Reference158 articles.

1. Early medieval cattle remains from a Scandinavian settlement in Dublin: genetic analysis and comparison with extant breeds

2. Recognition of Chitin and Proteins in Invertebrate Cuticles Using Analytical Pyrolysis/Gas Chromatography and Pyrolysis/Gas Chromatography/Mass Spectrometry

3. Lockheart M. J. , van Bergen P. F. , and Evershed R. P. In press. Chemotaxonomic classification of fossil leaves from the Miocene Clarkia lake deposit, Idaho, USA, based on n-alkyl lipid distributions and principal component analyses. Organic Geochemistry.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3