Observed phenotypic variation in a Paleozoic bryozoan

Author:

Hageman Steven J.

Abstract

Documentation of morphologic variation within and among fossil species (and larger clades) provides fundamental data needed for studies of evolution, paleoecology, and the systematic foundation required for most fields of paleobiology. In paleontological (and, frequently, biological) studies, morphologic variation is used as a general proxy for genetic variation. Although the occurrence of ecophenotypic variation is well appreciated in these studies, it is only with the use of colonial (clonal) organisms that the scope and significance of phenotypic variation can be evaluated directly. Systematic evaluation of intracolonial morphologic variation (transects through growth series) can yield insights about ecophenotypic variation in bryozoans and suggest the most appropriate methods for data collection in paleobiologic and taxonomic studies.In this study, morphological conservatism is documented within local segments of bryozoan colonies; each zooid is generally more similar to adjacent zooids than to distant zooids within the same colony. One region of a colony, therefore, can be more similar to a region of a different colony than to a distant region of its own colony. Variation within one colony does not, however, represent the total variation among a group of specimens, indicating a colonial level of morphologic control (genetic or macroenvironmental) over morphogenesis. Directional morphogenetic gradients (associated with successive ontogenetic histories) are not recognized in these specimens, but fluctuating trends within colonies (some cyclic), were observed and are indicative of changing microenvironmental influence during skeletal formation. In order to best document morphologic variation within a population, for any type of paleobiological study, individual measurements should be widely distributed over large colony fragments and (or) a minimal number of measurements collected from each of a large number of smaller fragments.Direct extrapolation of these results to non-colonial organisms is not appropriate at this time. However, additional, related studies with bryozoans and other colonial organisms (e.g., corals, graptolites), should provide a greater, general appreciation of relationships between morphology and genetics.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

Reference33 articles.

1. Hageman S. J. 1993. Effects of nonnormality on studies of morphological variation of a rhabdomesine bryozoan, Streblotrypa (Streblascopora) prisca (Gabb and Horn). University of Kansas Paleontological Contributions new series no. 4.

2. The concepts of astogeny and ontogeny in stenolaemate bryozoans, and their illustration in colonies of Tabulipora carbonaria from the Lower Permian of Kansas

3. Morphologic variation within and among genotypes in two Devonian bryozoan species: an independent indicator of paleostability;Pachut;Journal of Paleontology,1982

4. The species concept in fossil hermatypic corals: a statistical approach;Foster;Palaeontographica Americana,1984

5. Holdener E. J. In press. Numerical taxonomy of fenestrate bryozoans: evaluation of methodology and applicability to analyses of microevolution. Journal of Paleontology.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3