The evolutionary bootstrap: a new approach to the study of taxonomic diversity

Author:

Gilinsky Norman L.,Bambach Richard K.

Abstract

The evolutionary bootstrap is a new approach to the analysis of patterns of taxonomic diversity. In general, the evolutionary bootstrap works by surveying the diversity history of a taxon, learning its dynamic properties, and then generating randomly large numbers of artificial diversity histories based upon what was learned. The distribution of artificial—or bootstrapped—diversity histories approximates the distribution of diversity histories that were possible for taxa with the dynamic properties of the real taxon, and serves as a paleontological null hypothesis for studying statistically the diversity history of the real taxon.Two null hypotheses were established, the additive and the multiplicative. The additive null hypothesis assumes that the amount of diversity change that occurs in a higher taxon during an interval of time is independent of the number of member subtaxa present at the beginning of the interval. The multiplicative null hypothesis, in contrast, assumes that the amount of diversity change that occurs is dependent upon the number of member subtaxa present at the start. Thus the two null hypotheses represent end members of a diversity-independent/diversity-dependent continuum of possibilities.Detailed analyses using the evolutionary bootstrap, in conjunction with the clade statistics of Gould et al. (1977), show that several of the 17 higher taxa studied have diversity histories that are statistically significantly different from the random expectation under one or both null hypotheses. Analyses of multiple taxa in aggregate also reveal several properties of diversity histories that are statistically significantly different from random. Real taxa tend to have higher uniformities and lower maximum diversities than expected under the multiplicative null hypothesis. They have lower uniformities, higher maximum diversities, and longer durations than expected under the additive null hypothesis. And, they have lower centers of gravity than expected under either null hypothesis. Overall, the results provide a possible statistical verification of the process of taxonomic (traditionally, adaptive) radiation and suggest the need to consider deterministic explanations for observed diversity patterns.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

Reference24 articles.

1. Natural clades differ from “random” clades: simulations and analyses

2. A kinetic model of Phanerozoic taxonomic diversity;Sepkoski;II. Early Phanerozoic families and multiple equilibria. Paleobiology.,1979

3. A kinetic model of Phanerozoic taxonomic diversity;Sepkoski;III. Post-Paleozoic families and mass extinctions. Paleobiology.,1984

4. A leisurely look at the bootstrap, the jackknife, and cross-validation;Efron;Am. Statist.,1983

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3