Locomotion in non-avian dinosaurs: integrating data from hindlimb kinematics, in vivo strains, and bone morphology

Author:

Carrano Matthew T.

Abstract

Analyses of non-avian dinosaur locomotion have been hampered by the lack of an appropriate locomotor analog among extant taxa. Birds, though members of the clade Dinosauria, have undergone significant modifications in hindlimb osteology and musculature. These changes have resulted in a uniquely developed system of limb kinematics (involving a more horizontal femoral posture and knee-dominated limb motion), which precludes the direct use of extant birds as models for non-avian dinosaur locomotion. Analyses of locomotor data from extant birds and mammals suggest a causal link between general hindlimb kinematics, bone strains, and limb bone morphology among these taxa. A model is proposed that relates the amount of torsional loading in femora to bone orientation, such that torsion is maximal in horizontal femora and minimal in vertical femora. Since bone safety factors are lower for torsional shear strains than for longitudinal axial strains, an increase in torsion can potentially affect bone morphology dramatically over evolutionary time. Interpreting the nearly identical limb bone dimensions and limb element proportions of non-avian dinosaurs and mammals in the light of this relationship supports the prediction of similar vertical femoral postures and hip-driven limb kinematics in these two groups.This information can be used to interpret patterns of locomotor evolution within Dinosauria. The evolution of quadrupedalism with large body size and the acquisition of cursorial or graviportal limb morphologies occurred repeatedly but did not affect the underlying uniformity of dinosaur locomotor morphology. Only derived coelurosaurian theropods (paravians) developed significant modifications of the basic dinosaurian patterns of limb use. Changes in theropod hindlimb kinematics and posture apparently began shortly prior to the origin of flight, but did not acquire a characteristically modern avian aspect until after the later acquisition of derived flight characteristics.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

Reference79 articles.

1. The origin and early evolution of birds

2. Crocodilian pelvic muscles and their avian and reptilian homologues;Romer;Bulletin of the American Museum of Natural History,1923b

3. Outgroup Analysis and Parsimony

4. A phylogenetic analysis of basal Anseriformes, the fossil Presbyornis, and the interordinal relationships of waterfowl;Livezey;Zoological Journal of the Linnean Society,1997

5. Energetics of running: a new perspective

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3