Author:
Chen Xinfu,Elliott Charles M.,Qi Tang
Abstract
In this paper, we study all the stationary solutions of the form u(r)einθ to the complex-valued Ginzburg–Landau equation on the complex plane: here (r, θ) are the polar coordinates, and n is any real number. In particular, we show that there exists a unique solution which approaches to a nonzero constant as r → ∞.
Publisher
Cambridge University Press (CUP)
Reference10 articles.
1. Uniqueness of positive radial solutions of Δu+f(u)=0 in ℝn
2. 7 McLeod K. , Troy W. C. and Weissler F. B. . Radial solutions of Δu + f(u) = 0 with prescribed number of zeros. J. Differential Equations (to appear).
3. Limite singuliere pour la minimisation de fonctionnelles du type Ginzburg-Landau;Bethuel;C. R. Acad. Sci. Paris Ser. 1 Math.,1992
4. Symmetric vortices for the Ginzberg-Landau equations of superconductivity and the nonlinear desingularization phenomenon
5. 3 Elliott C. M. , Matano H. and Tang Qi . Zeros of a complex Ginzburg-Landau order parameter with applications to superconductivity. European J. Appl. Math, (to appear).
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献