On Saint-Venant's problem for an elastic strip

Author:

Mielke Alexander

Abstract

SynopsisThe equilibrium equations for elastic deformations of an infinite strip are considered. Under the assumption of sufficiently small strains along the whole body, it is shown that all solutions lie on a six-dimensional manifold. This is achieved by rewriting the field equations as a differential equation in a function spaceover the cross-section, the axial variable taken as time. Then the theory of centre manifolds for elliptic systems applies. Thus the local Saint-Venant's problem is solved. Moreover, the structure of the finite-dimensional solution space is analysed to reveal exactly the two-dimensional rod equations of Kirchhoff. The constitutive relations for this rod model are calculated in a mathematically rigorous way out of the constitutive law of the material forming the strip.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference19 articles.

1. Minimum energy characterizations of Saint-Venant's solution to the relaxed Saint-Venant problem

2. Memoire sur la torsion des prismes;Saint-Venant;Mémoires présentes par divers savant à l'academie de sciences de l'institut imperial de France,1856

3. The principle of Saint-Venant in linear and non-linear plane elasticity

4. A Saint-Venant principle for nonlinear elasticity

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3