Abstract
SynopsisWe consider ordered regular semigroups in which the order extends the natural order on the idempotents, and which are graced with the presence of a greatest idempotent. This implies that every element has a greatest inverse. An investigation into the properties ofthese special elements allows a description of Green's relations on the subsemigroup generated by the idempotents. This in turn leads to a complete description of the structure of idempotent-generated naturally ordered regular semigroups having a greatest idempotent. The smallest such semigroup that is not orthodox is also described. These results lead us to obtain structure theorems in the general case with the added condition that Green's relations be regular. Finally, necessary and sufficient conditions for such a semigroup to be a Dubreil-Jacotin semigroup are found.
Publisher
Cambridge University Press (CUP)
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献