Abstract
We show that no infinite-dimensional Banach space provided with a strictly convex norm satisfies Lindenstrauss's property B. This is a generalization of previous results by Lindenstrauss for rotund spaces isomorphic to C0 and by Gowers for ℓp (1 < p < ∞). Also, there is an appropriate complex version of the announced result that works for all the C-strictly convex spaces. As a consequence, the Hardy space H1, any infinite-dimensional complex L1(μ), and, in general, any infinite-dimensional predual of a von Neumann algebra lacks Lindenstrauss's property B.
Publisher
Cambridge University Press (CUP)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献