Author:
Cheng Qing-Ming,Shu Shichang,Suh Young Jin
Abstract
We study curvature structures of compact hypersurfaces in the unit sphere Sn+1(1) with two distinct principal curvatures. First of all, we prove that the Riemannian product is the only compact hypersurface in Sn+1(1) with two distinct principal curvatures, one of which is simple and satisfies
where n(n − 1)r is the scalar curvature of hypersurfaces and c2 = (n − 2)/nr. This generalized the result of Cheng, where the scalar curvature is constant is assumed. Secondly, we prove that the Riemannian product is the only compact hypersurface with non-zero mean curvature in Sn+1(1) with two distinct principal curvatures, one of which is simple and satisfies
This gives a partial answer for the problem proposed by Cheng.
Publisher
Cambridge University Press (CUP)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献