Author:
Chorwadwala Anisa M. H.,Mahadevan Rajesh
Abstract
It has been shown by Kesavan (Proc. R. Soc. Edinb. A (133) (2003), 617–624) that the first eigenvalue for the Dirichlet Laplacian in a punctured ball, with the puncture having the shape of a ball, is maximum if and only if the balls are concentric. Recently, Emamizadeh and Zivari-Rezapour (Proc. Am. Math. Soc.136 (2007), 1325–1331) have tried to generalize this result to the case of the p-Laplacian but could succeed only in proving a domain monotonicity result for a weighted eigenvalue problem in which the weights need to satisfy some artificial conditions. In this paper we generalize the result of Kesavan to the case of the p-Laplacian (1 < p < ∞) without any artificial restrictions, and in the process we simplify greatly the proof, even in the case of the Laplacian. The uniqueness of the maximizing domain in the nonlinear case is still an open question.
Publisher
Cambridge University Press (CUP)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献