Abstract
We study a predator–prey system with Holling–Tanner interaction terms. We show that if the saturation rate m is large, spatially inhomogeneous steady-state solutions arise, contrasting sharply with the small-m case, where no such solution could exist. Furthermore, for large m, we give sharp estimates on the ranges of other parameters where spatially inhomogeneous solutions can exist. We also determine the asymptotic behaviour of the spatially inhomogeneous solutions as m → ∞, and an interesting relation between this population model and free boundary problems is revealed.
Publisher
Cambridge University Press (CUP)
Cited by
96 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献