Abstract
SynopsisWe consider the eigenfunction expansions associated with a symmetric differential operator M[·] of order 2n with coefficients defined on an open interval (a, b). Each singular endpoint of (a, b) is assumed to be of limit-n type. A direct convergence theory is established for the eigenfunction series expansion of a function y in a set Termwise differentiation of the series is established for the derivatives of order up to n. For O ≤ i ≤ n − 1, the i-fold differentiated series converges absolutely and uniformly to y(i) on compact intervals; the n−fold differentiated series converges to yn in the mean. The expansion theory is valid also when an essential spectrum is present. An explicit formula is given for the calculation of the spectral matrix.
Publisher
Cambridge University Press (CUP)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献