Abstract
SynopsisThe existence of solutions to equations in normed spaces is proved when the nonlinear part of the equation satisfies growth and asymptotic conditions, whether the linear part is invertible or not. For this, we use the coincidence degree theory developed by Mawhin. We apply our abstract results to boundary value problems for nonlinear vector ordinary differential equations. In particular, we consider the Picard boundary value problem at the first eigenvalue and the periodic boundary value problem at resonance. In both cases, the nonlinear term can be of superlinear type. Also, necessary and sufficient conditions of Landesman-Lazer type are obtained.
Publisher
Cambridge University Press (CUP)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献