Abstract
We obtain global existence and regularity of strong solutions to the incompressible Navier–Stokes equations for a variety of boundary conditions in such a way that the initial and forcing data can be large in the high-frequency eigenspaces of the Stokes operator. We do not require that the domain be thin as in previous analyses. But in the case of thin domains (and zero Dirichlet boundary conditions) our results represent a further improvement and refinement of previous results obtained.
Publisher
Cambridge University Press (CUP)
Reference15 articles.
1. Etude de diverses équations intégrales nonlinéaires et de quelques problémes que pose l'hydrodynamique;Leray;J. Math. Pures Appl.,1933
2. Navier–Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions;Raugel;J. Am. Math. Soc.,1993
3. Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献