Abstract
The present paper describes the topological and ergodic structure of the set of bounded trajectories of the flow defined by a scalar convex differential equation. We characterize the minimal subsets, the ergodic measures concentrated on them, and study the longtime behaviour of the bounded trajectories in terms of the Lyapunov exponents of the linearized equations. In particular, we obtain conditions that guarantee the existence of almost-periodic, almost-automorphic and recurrent solutions.
Publisher
Cambridge University Press (CUP)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献