Singular eigenvalue problems with eigenvalue parameter contained in the boundary conditions

Author:

Fulton Charles T.

Abstract

SynopsisIn this paper I extend the analysis of regular problems containing the eigenvalue parameter in the boundary conditions given by Walter (1973) and myself (1977) to singular problems which involve the eigenvalue parameter linearly in a regular or a limit-circle boundary condition at the left endpoint. The formulation of the limit-circle boundary conditions follows that given in another paper by the present author in 1977, and has the advantage that a λ-dependent boundary condition at a regular endpoint becomes a special case of a λ-dependent boundary condition at a limit-circle endpoint. The simplicity of the spectrum is also built into the formulation given, and the spectral function is shown to have bounded total variation over (−∞, ∞) which is known in terms of the parameters of the λ-dependent boundary condition independently of the limit-circle/limit-point classification at the right endpoint. The theory is applied to the constant coefficient equation in [0, ∞) and the Bessel equation of order zero in (0, ∞), explicit formulae for the spectral function being obtained in each case. Finally, the question is posed as to whether the classical Weyl theory for problems not involving λ in the boundary conditions can also be formulated so as to involve spectral functions having bounded total variation.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference72 articles.

1. Su un problema al contorno per l'equazione Δu + λu = 0.;Zecca;Rend. Accad. Sci. Fis. Mat. Napoli,1966

2. A note on eigenvalue problems with eigenvalue parameter in the boundary conditions

3. 2.—On Weyl's Function m(λ).

4. Über gewöhnliche lineare Differentialgleichungen mit Singulären Stellen und ihre Eigenfunktionen;Weyl;Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II,1910

5. A simplified proof of the expansion theorem for singular second order linear differential equations

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3