On the existence of dead cores for degenerate Lotka—Volterra models

Author:

Delgado M.,Suárez A.

Abstract

In this work we study the existence and qualitative properties of non-negative solutions of the Lotka—Volterra models with nonlinear diffusion under homogeneous Dirichlet boundary conditions. We consider the three typical interactions: prey—predator, competition and symbiosis. Unlike the linear diffusion models, non-trivial non-negative solutions can exist which are not strictly positive. Sufficient conditions in terms of the coefficients involved in the setting of the models are given, assuring that one species (or both) does not survive on a set of its habitat (called ‘dead core’) of positive measure.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Periodic Solutions for the Degenerate Lotka–Volterra Competition System;Qualitative Theory of Dynamical Systems;2020-07-21

2. Coexistence Solutions for a Periodic Competition Model with Singular–Degenerate Diffusion;Proceedings of the Edinburgh Mathematical Society;2016-12-15

3. Spatial growth with exogenous saving rates;Journal of Mathematical Economics;2016-12

4. Well-posedness and qualitative properties of a dynamical model for the ideal free distribution;Journal of Mathematical Biology;2013-10-30

5. NONNEGATIVE SOLUTIONS FOR INDEFINITE SUBLINEAR ELLIPTIC PROBLEMS;Communications in Contemporary Mathematics;2012-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3