Optimal bounds and blow up phenomena for parabolic problems in narrowing domains

Author:

Andreucci Daniele,Tedeev Anatoli F.

Abstract

We consider degenerate parabolic problems in domains with noncompact boundary and infinite volume, in any spatial dimension. The equation is of doubly nonlinear type. On the boundary we prescribe a homogeneous Neumann condition. The spatial domain is narrowing at infinity. We prove uniform convergence to 0 of solutions as time approaches ∞. To this end, due to the geometry of the domain, the requirement that the initial datum have finite mass is not enough, and we have to stipulate the further assumption that a certain moment of the initial datum (connected with the geometry of the domain) is finite. We prove optimal asymptotic estimates of the solution. Moreover, we apply our method to the investigation of blow-up problems in narrowing domains, obtaining a sharp condition, in integral form, for the existence of solutions defined for all positive times.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference10 articles.

1. The natural generalizationj of the natural conditions of ladyzhenskaya and uralľtseva for elliptic equations

2. 4 Andreucci D. and Tedeev A. F. . Sharp estimates and finite speed of propagation for a Neumann problem in domains narrowing at infinity (in prep.).

3. On a estimate of the Dirichlet integral in unbounded domains;Gushchin;Mat. Sb.,1976

4. Degenerate parabolic equations with initial data measures

5. Holder Estimates for Local Solutions of Some Doubly Nonlinear Degenerate Parabolic Equations

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3