Relaxation of some multi-well problems

Author:

Bhattacharya Kaushik,Dolzmann Georg

Abstract

Mathematical models of phase transitions in solids lead to the variational problem, minimize ∫Ω W (Du) dx, where W has a multi-well structure, i.e. W = 0 on a multi-well set K and W > 0 otherwise. We study this problem in two dimensions in the case of equal determinant, i.e. for K = SO(2)U1 ∪ … ∪SO(2)Uk or K = O(2)U1 ∪ … ∪ O(2)Uk for U1, … , Uk ∈ M2×2 with det Ui = δ in three dimensions when the matrices Ui are essentially two-dimensional and also for K = SO(3)Û1 ∪ … ∪ SO(3)Ûk for U1, … , Uk ∈ M3×3 with , which arises in the study of thin films. Here, Ûi denotes the (3×2) matrix formed with the first two columns of Ui. We characterize generalized convex hulls, including the quasiconvex hull, of these sets, prove existence of minimizers and identify conditions for the uniqueness of the minimizing Young measure. Finally, we use the characterization of the quasiconvex hull to propose ‘approximate relaxed energies’, quasiconvex functions which vanish on the quasiconvex hull of K and grow quadratically away from it.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3