A few remarks on differential inclusions

Author:

Sychev M. A.

Abstract

In this paper we analyse the methodology of the theory of differential inclusions. First, we emphasize that any sequence of piecewise affine functions with successive elements obtained by perturbations of preceding functions in the sets of their affinity converges strongly, together with the gradients. This gives a simple algorithm with which to construct sequences of approximate solutions that converge to exact solutions (neither the specific choice suggested by ‘the method of convex integration for Lipschitz functions’ nor Baire category methodology is required). We then suggest a functional that is defined in the set of admissible functions and measures maximal oscillations produced by sequences of admissible functions weakly convergent to a given function. This functional can be used to prove that the set of stable solutions is dense in the weak topology in the closure of the set of admissible functions either via the Baire category lemma or via a specific choice of strictly convergent sequences.We explain how the above-mentioned methods of finding solutions to differential inclusions are connected to earlier results on weak–strong convergence, i.e. to results on stability, in the calculus of variations and in differential inclusions.We also include information on developments in the subject in the three years after the results of this work were obtained.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Onsager's type conjecture for the inviscid Boussinesq equations;Journal of Functional Analysis;2024-10

2. On the interplay of anisotropy and geometry for polycrystals in single‐slip crystal plasticity;ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik;2022-07-31

3. An existence theorem for non-homogeneous differential inclusions in Sobolev spaces;Advances in Calculus of Variations;2019-07-12

4. Calculus of Variations;Universitext;2018

5. Dissipative continuous Euler flows;Inventiones mathematicae;2012-10-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3