Abstract
SynopsisIn the Hilbert space framework, we give some results concerning the behaviour when t goes to infinity for solutions of equations of the form:A is assumed to be a maximal monotone operator and F(t) is a periodic function.When F = 0, under a compactness assumption for trajectories of (1), we give the complete description of the asymptotic behaviour, e.g. every trajectory is asymptotic to an almost-periodic solution of (1). When F ≠ cst, the compactness hypothesis being too restrictive, we concentrate our efforts on the case of the equation:with Dirichlet boundary condition) and get weak convergence to particular solutions of the equation when β is either univalued or strictly monotone. The methods used in these cases seem of general interest for hyperbolic equations of dissipative type with periodic forcing term.
Publisher
Cambridge University Press (CUP)
Reference18 articles.
1. Comportement à l'infini pour une équation d'ondes non linéaire avec “forcing” periodique;Haraux;C.R. Acad. Sci. Paris Sér. A–B,1978
2. Équations d'évolution non linéaires : solutions bornées et périodiques
3. 16 Haraux A. . Opérateurs maximaux monotones et oscillations forcées non linéaires (Thése Univ. Paris VI, 1978).
4. Asymptotic behavior of nonlinear contraction semigroups
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献