20.—Deficiency Indices of Polynomials in Symmetric Differential Expressions, II

Author:

Zettl Anton

Abstract

SynopsisGiven a symmetric (formally self-adjoint) ordinary linear differential expression L which is regular on the interval [0, ∞) and has C coefficients, we investigate the relationship between the deficiency indices of L and those of p(L), where p(x) is any real polynomial of degree k > 1. Previously we established the following inequalities: (a) For k even, say k = 2r, N+(p(L)), N(p(L)) ≧ r[N+(L)+N(L)] and (b) for k odd, say k = 2r+1where N+(M), N(M) denote the deficiency indices of the symmetric expression M (or of the minimal operator associated with M in the Hilbert space L2(0, ∞)) corresponding to the upper and lower half-planes, respectively. Here we give a necessary and sufficient condition for equality to hold in the above inequalities.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference12 articles.

1. Polynomials and the limit point condition

2. On the theory of singular differential operators;Glazman;Uspehi Mat. Nauk,1950

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deficiency indices of the polynomials of formally self-adjoint difference expressions;Journal of Difference Equations and Applications;2015-06-19

2. Limit-point criteria for semi-degenerate singular Hamiltonian differential systems with perturbation terms;Journal of Mathematical Analysis and Applications;2007-10

3. On the product of self-adjoint Sturm-Liouville differential operators in direct sum spaces;Tamkang Journal of Mathematics;2006-03-31

4. Levinson's limit-point criterion and powers;Journal of Mathematical Analysis and Applications;1978-03

5. Second-order differential expressions whose squares are limit-3;Proceedings of the Royal Society of Edinburgh: Section A Mathematics;1977

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3