Author:
Churchill Richard C.,Rod David L.
Abstract
SynopsisAveraging techniques on Hamiltonian dynamical systems can often be used to establish the existence of hyperbolic periodic orbits. In equilibrium situations, it is then often difficult to show that there are homoclinic/heteroclinic connections between these hyperbolic orbits in the original unaveraged system. This existence problem is solved in this paper for a class of Hamiltonian systems admitting a sufficient number of symmetries (including reversing symmetries). Under isoenergetic reduction, the problem is reduced to one involving reversible vector fields under time-dependent perturbations admitting the same reversing symmetries. Applications are made to the one-parameter Hénon-Heiles family. The paper concludes with remarks on the problem of showing transversality of these homoclinic/heteroclinic orbits.
Publisher
Cambridge University Press (CUP)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献