Abstract
We consider the following Fife–Greenlee problem:
where Ω is a smooth and bounded domain in ℝn, ν is the outer unit normal to ∂Ω and a is a smooth function satisfying a(x) ∈ (–1, 1) in . Let K, Ω– and Ω+ be the zero-level sets of a, {a < 0} and {a < 0}, respectively. We assume ∇a ≠ 0 on K. Fife and Greenlee constructed stable layer solutions, while del Pino et al. proved the existence of one unstable layer solution provided that some gap condition is satisfied. In this paper, for each odd integer m ≥ 3, we prove the existence of a sequence ε = εj → 0, and a solution with m-transition layers near K. The distance of any two layers is O(ε log(1/ε)). Furthermore, converges uniformly to ±1 on the compact sets of Ω± as j → +∞
Publisher
Cambridge University Press (CUP)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献