Large-time dynamics for the one-dimensional Schrödinger equation

Author:

Burq Nicolas

Abstract

Famous results by Rademacher, Kolmogorov and Paley and Zygmund state that random series on the torus enjoy better Lp bounds that the deterministic bounds. We present a natural extension of these harmonic analysis results to a partial-differential-equations setting. Specifically, we consider the one-dimensional nonlinear harmonic oscillator i∂tu + Δu − |x|2u = |u|r−1u, and exhibit examples for which the solutions are better behaved for randomly chosen initial data than would be predicted by the deterministic theory. In particular, on a deterministic point of view, the nonlinear harmonic oscillator equation is well posed in L2(ℝ) if and only if r ≤ 5. However, we shall prove that, for all nonlinearities |u|r−1u, r > 1, not only is the equation well posed for a large set of initial data whose Sobolev regularity is below L2, but also the flows enjoy very nice large-time probabilistic behaviour.These results are joint work with Laurent Thomann and Nikolay Tzvetkov.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spectral shape optimization for the Neumann traces of the Dirichlet-Laplacian eigenfunctions;Calculus of Variations and Partial Differential Equations;2019-03-20

2. Actuator Design for Parabolic Distributed Parameter Systems with the Moment Method;SIAM Journal on Control and Optimization;2017-01

3. Optimal observability of the multi-dimensional wave and Schrödinger equations in quantum ergodic domains;Journal of the European Mathematical Society;2016

4. Optimal design of sensors for a damped wave equation;Dynamical Systems and Differential Equations, AIMS Proceedings 2015 Proceedings of the 10th AIMS International Conference (Madrid, Spain);2015-11

5. OPTIMAL DESIGN OF SENSORS FOR A DAMPED WAVE EQUATION;DISCRETE CONT DYN-A;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3