Abstract
We use methods of bifurcation theory to study properties of solution curves for a class of quasilinear two-point problems. Unlike semilinear equations, here, solution curves may stop at some point, or solution curves may turn the ‘wrong way’ (compared with semilinear equations) as in a paper by Habets and Omari, where the prescribed mean curvature equation was considered. This class of equations will be our main example. Another difference from semilinear equations is that the bifurcation diagram may depend on the length of the interval, as was discovered recently by Pan, who considered the prescribed mean curvature equation and f(u) = eu. We generalize this result to convex f(u), with f(0) > 0, and to more general quasilinear equations. We also give formulae which allow us to compute all possible turning points and the direction of the turn, generalizing similar formulae in Korman et al. We also present a numerical computation of the bifurcation curves.
Publisher
Cambridge University Press (CUP)
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献