Author:
Marletta Marco,Shkalikov Andrei,Tretter Christiane
Abstract
The paper deals with linear pencils N − λP of ordinary differential operators on a finite interval with λ-dependent boundary conditions. Three different problems of this form arising in elasticity and hydrodynamics are considered. So-called linearization pairs (W, T) are constructed for the problems in question. More precisely, functional spaces W densely embedded in L2 and linear operators T acting in W are constructed such that the eigenvalues and the eigen- and associated functions of T coincide with those of the original problems. The spectral properties of the linearized operators T are studied. In particular, it is proved that the eigen- and associated functions of all linearizations (and hence of the corresponding original problems) form Riesz bases in the spaces W and in other spaces which are obtained by interpolation between D(T) and W.
Publisher
Cambridge University Press (CUP)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献