Admissibility criteria for shock wave solutions of a system of conservation laws of mixed type

Author:

Shearer Michael

Abstract

SynopsisThe following system of conservation laws is considered:where σ: ℝ→ℝ is a smooth function monotonically increasing except in an interval. Two criteria for the admissibility of shocks are shown to be independent in the sense that there are shocks satisfying each and violating the other. This contrasts with the corresponding situation for strictly hyperbolic systems (σ'(u)>0 for all u), for which the two criteria are equivalent.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference6 articles.

1. 5 Shearer M. . The Riemann problem for a class of conservation laws of mixed type. Differential Equations, to appear.

2. Sur la forme que prennent les equations du mouvement des fluides si Ton tient compte des forces capillaires par des variations de densite considerables mais continues et sur la theorie de la capillarite dans l'hypothese d'une variation continue de la densite;Korteweg;Arch. Neerl. Sci.,1901

3. Systems of conservation laws of mixed type

4. The propagation of phase boundaries in elastic bars

5. Viscosity matrices for two-dimensional nonlinear hyperbolic systems

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Phase transitions for laminar-turbulent flows in a pipeline or through porous media;Communications in Information and Systems;2013

2. A Dynamical Systems Approach to Traveling Wave Solutions for Liquid/Vapor Phase Transition;Infinite Dimensional Dynamical Systems;2012-09-12

3. Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium;ESAIM: Mathematical Modelling and Numerical Analysis;2012-02-13

4. Hyperbolic Conservation Laws in Continuum Physics;Grundlehren der mathematischen Wissenschaften;2010

5. Jump conditions and kinetic relations at moving discontinuities;ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik;2009-12-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3