Author:
Gordejuela J. J. Etayo,Martínez E.
Abstract
Every finite group G acts as an automorphism group of some non-orientable Klein surfaces without boundary. The minimal genus of these surfaces is called the symmetric cross-cap number and denoted by $\tilde{\sigma}(G)$. This number is related to other parameters defined on surfaces as the symmetric genus and the strong symmetric genus.The systematic study of the symmetric cross-cap number was begun by C. L. May, who also calculated it for certain finite groups. Here we obtain the symmetric cross-cap number for the groups Cm × Dn. As an application of this result, we obtain arithmetic sequences of integers which are the symmetric cross-cap number of some group. Finally, we recall the several different genera of the groups Cm × Dn.
Publisher
Cambridge University Press (CUP)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献