Variational perturbative methods and bifurcation of bound states from the essential spectrum

Author:

Ambrosetti Antonio,Badiale Marino

Abstract

This paper consists of two main parts. The first deals with a perturbative method in critical point theory and can be seen as the generalisation and completion of some earlier results. The second part is concerned with applications of the abstract setup to the existence of bound states of a class of elliptic differential equations that branch off from the infimum of the essential spectrum.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference7 articles.

1. Bifurcation of Homoclinic Orbits and Bifurcation from the Essential Spectrum

2. 3 Ambrosetti A. , Badiale M. and Cingolani S. . Semiclassical states of nonlinear Schrödinger equations. Arch. Rational Mech. Anal, (to appear); see also the preliminary Note, Rend. Lincei. Ser.;IX 7 (1996), 155–60.

3. Bifurcation in Lp(ℝN) for a semilinear elliptic equation;Stuart;Proc. London Math. Soc.,1988

4. 2 Ambrosetti A. and Badiale M. . Homoclinics: Poincaré–Melnikov type results via a variational approach. Ann. Inst. H. Poincaré Anal. Non Linéaire (to appear); see also the preliminary Note, C. R. Acad. Sci. Paris Sér. I 323 (1996), 753é8.

5. On perturbations of a translationally-invariant differential equation

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Non-compactness results for the spinorial Yamabe-type problems with non-smooth geometric data;Journal of Functional Analysis;2024-08

2. Solutions of Schrödinger equations with symmetry in orientation preserving tetrahedral group;Journal of Differential Equations;2023-07

3. Solutions of spinorial Yamabe-type problems on ^{}: Perturbations and applications;Transactions of the American Mathematical Society;2023-06-21

4. Perturbative techniques in conformal geometry;Rendiconti Lincei - Matematica e Applicazioni;2022-12-29

5. Many closed K-magnetic geodesics on $${\mathbb {S}}^2$$;manuscripta mathematica;2021-04-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3