Abstract
We answer questions of A. Carbery, M. Trinidad Menárguez and F. Soria by proving, firstly, that for the centred Hardy–Littlewood maximal function on the real line, the best constant C for the weak type (1, 1) inequality is strictly larger than 3/2, and secondly, that C is strictly less than 2 (known to be the best constant in the noncentred case).
Publisher
Cambridge University Press (CUP)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献