Author:
Drnovšek Roman,Novak Nika,Müller Vladimir
Abstract
We prove that a (bounded, linear) operator acting on an infinite-dimensional, separable, complex Hilbert space can be written as a product of two quasi-nilpotent operators if and only if it is not a semi-Fredholm operator. This solves the problem posed by Fong and Sourour in 1984. We also consider some closely related questions. In particular, we show that an operator can be expressed as a product of two nilpotent operators if and only if its kernel and co-kernel are both infinite dimensional. This answers the question implicitly posed by Wu in 1989.
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On linear maps preserving generalized invertibility and related properties;Journal of Mathematical Analysis and Applications;2008-09
2. Products of square-zero operators;Journal of Mathematical Analysis and Applications;2008-03