Abstract
This paper deals with the non-negative boundary blow-up solutions of the equation ∆u = b(x)up + c(x)uσ|∇u|q in Ω ⊂ ℝ,N, where b(x), c(x) ∈ Cγ (Ω,ℝ+) for some 0 < γ < 1 and can be vanishing or singular on the boundary, and p, σ and q are non-negative constants. The existence and asymptotic behaviour of such a solution near the boundary are investigated, and we show how the nonlinear gradient term affects the results. As a consequence of the asymptotic behaviour, we also show the uniqueness result.
Publisher
Cambridge University Press (CUP)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献