Understanding, Idealization, and Explainable AI

Author:

Fleisher WillORCID

Abstract

AbstractMany AI systems that make important decisions are black boxes: how they function is opaque even to their developers. This is due to their high complexity and to the fact that they are trained rather than programmed. Efforts to alleviate the opacity of black box systems are typically discussed in terms of transparency, interpretability, and explainability. However, there is little agreement about what these key concepts mean, which makes it difficult to adjudicate the success or promise of opacity alleviation methods. I argue for a unified account of these key concepts that treats the concept of understanding as fundamental. This allows resources from the philosophy of science and the epistemology of understanding to help guide opacity alleviation efforts. A first significant benefit of this understanding account is that it defuses one of the primary, in-principle objections to post hoc explainable AI (XAI) methods. This “rationalization objection” argues that XAI methods provide mere rationalizations rather than genuine explanations. This is because XAI methods involve using a separate “explanation” system to approximate the original black box system. These explanation systems function in a completely different way than the original system, yet XAI methods make inferences about the original system based on the behavior of the explanation system. I argue that, if we conceive of XAI methods as idealized scientific models, this rationalization worry is dissolved. Idealized scientific models misrepresent their target phenomena, yet are capable of providing significant and genuine understanding of their targets.

Publisher

Cambridge University Press (CUP)

Subject

History and Philosophy of Science

Reference69 articles.

1. Deep learning

2. Understanding from Machine Learning Models

3. Lakkaraju, H. , Adebayo, J. and Singh, S. (2020). ‘Explaining ml Predictions: State of the Art, Challenges, Opportunities.’ In Neurips ’20. https://explainml-tutorial.github.io/neurips20.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Do opaque algorithms have functions?;Synthese;2024-08-29

2. Non-Representational Models and Objectual Understanding;Erkenntnis;2024-08-24

3. Mapping the landscape of ethical considerations in explainable AI research;Ethics and Information Technology;2024-06-25

4. What do algorithms explain? The issue of the goals and capabilities of Explainable Artificial Intelligence (XAI);Humanities and Social Sciences Communications;2024-06-14

5. SIDEs: Separating Idealization from Deceptive 'Explanations' in xAI;The 2024 ACM Conference on Fairness, Accountability, and Transparency;2024-06-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3