Abstract
AbstractThe question about the stability of certain biomolecules is directly connected to the life-detection missions aiming to search for past or present life beyond Earth. The extreme conditions experienced on extraterrestrial planet surface (e.g. Mars), characterized by ionizing and non-ionizing radiation, CO2-atmosphere and reactive species, may destroy the hypothetical traces of life. In this context, the study of the biomolecules behaviour after ionizing radiation exposure could provide support for the onboard instrumentation and data interpretation of the life exploration missions on other planets. Here, as a part of STARLIFE campaign, we investigated the effects of gamma rays on two classes of fungal biomolecules–nucleic acids and melanin pigments – considered as promising biosignatures to search for during the ‘in situ life-detection’ missions beyond Earth.
Funder
Agenzia Spaziale Italiana
Deutsche Forschungsgemeinschaft
Publisher
Cambridge University Press (CUP)
Subject
Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Physics and Astronomy (miscellaneous),Ecology, Evolution, Behavior and Systematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献